perlfaq7(1)
NAME
perlfaq7 - General Perl Language Issues ($Revision: 1.28 $, $Date:
2005/12/31 00:54:37 $)
DESCRIPTION
This section deals with general Perl language issues that don't clearly
fit into any of the other sections.
Can I get a BNF/yacc/RE for the Perl language?
There is no BNF, but you can paw your way through the yacc grammar in
perly.y in the source distribution if you're particularly brave. The
grammar relies on very smart tokenizing code, so be prepared to venture
into toke.c as well.
In the words of Chaim Frenkel: "Perl's grammar can not be reduced to
BNF. The work of parsing perl is distributed between yacc, the lexer,
smoke and mirrors."
What are all these $@%&* punctuation signs, and how do I know when to
use them?
They are type specifiers, as detailed in perldata:
$ for scalar values (number, string or reference)
@ for arrays
% for hashes (associative arrays)
& for subroutines (aka functions, procedures, methods)
* for all types of that symbol name. In version 4 you used them like
pointers, but in modern perls you can just use references.
There are couple of other symbols that you're likely to encounter that
aren't really type specifiers:
<> are used for inputting a record from a filehandle.
\ takes a reference to something.
Note that <FILE> is neither the type specifier for files nor the name
of the handle. It is the "<>" operator applied to the handle FILE. It
reads one line (well, record--see "$/" in perlvar) from the handle FILE
in scalar context, or all lines in list context. When performing open,
close, or any other operation besides "<>" on files, or even when talk-
ing about the handle, do not use the brackets. These are correct:
"eof(FH)", "seek(FH, 0, 2)" and "copying from STDIN to FILE".
Do I always/never have to quote my strings or use semicolons and com-
mas?
Normally, a bareword doesn't need to be quoted, but in most cases prob-
ably should be (and must be under "use strict"). But a hash key con-
sisting of a simple word (that isn't the name of a defined subroutine)
and the left-hand operand to the "=>" operator both count as though
they were quoted:
This is like this
------------ ---------------
$foo{line} $foo{'line'}
bar => stuff 'bar' => stuff
The final semicolon in a block is optional, as is the final comma in a
list. Good style (see perlstyle) says to put them in except for
one-liners:
if ($whoops) { exit 1 }
@nums = (1, 2, 3);
if ($whoops) {
exit 1;
}
@lines = (
"There Beren came from mountains cold",
"And lost he wandered under leaves",
);
How do I skip some return values?
One way is to treat the return values as a list and index into it:
$dir = (getpwnam($user))[7];
Another way is to use undef as an element on the left-hand-side:
($dev, $ino, undef, undef, $uid, $gid) = stat($file);
You can also use a list slice to select only the elements that you
need:
($dev, $ino, $uid, $gid) = ( stat($file) )[0,1,4,5];
How do I temporarily block warnings?
If you are running Perl 5.6.0 or better, the "use warnings" pragma
allows fine control of what warning are produced. See perllexwarn for
more details.
{
no warnings; # temporarily turn off warnings
$a = $b + $c; # I know these might be undef
}
Additionally, you can enable and disable categories of warnings. You
turn off the categories you want to ignore and you can still get other
categories of warnings. See perllexwarn for the complete details,
including the category names and hierarchy.
{
no warnings 'uninitialized';
$a = $b + $c;
}
If you have an older version of Perl, the $^W variable (documented in
perlvar) controls runtime warnings for a block:
{
local $^W = 0; # temporarily turn off warnings
$a = $b + $c; # I know these might be undef
}
Note that like all the punctuation variables, you cannot currently use
my() on $^W, only local().
What's an extension?
An extension is a way of calling compiled C code from Perl. Reading
perlxstut is a good place to learn more about extensions.
Why do Perl operators have different precedence than C operators?
Actually, they don't. All C operators that Perl copies have the same
precedence in Perl as they do in C. The problem is with operators that
C doesn't have, especially functions that give a list context to every-
thing on their right, eg. print, chmod, exec, and so on. Such func-
tions are called "list operators" and appear as such in the precedence
table in perlop.
A common mistake is to write:
unlink $file || die "snafu";
This gets interpreted as:
unlink ($file || die "snafu");
To avoid this problem, either put in extra parentheses or use the super
low precedence "or" operator:
(unlink $file) || die "snafu";
unlink $file or die "snafu";
The "English" operators ("and", "or", "xor", and "not") deliberately
have precedence lower than that of list operators for just such situa-
tions as the one above.
Another operator with surprising precedence is exponentiation. It
binds more tightly even than unary minus, making "-2**2" product a neg-
ative not a positive four. It is also right-associating, meaning that
"2**3**2" is two raised to the ninth power, not eight squared.
Although it has the same precedence as in C, Perl's "?:" operator pro-
duces an lvalue. This assigns $x to either $a or $b, depending on the
trueness of $maybe:
($maybe ? $a : $b) = $x;
How do I declare/create a structure?
In general, you don't "declare" a structure. Just use a (probably
anonymous) hash reference. See perlref and perldsc for details.
Here's an example:
$person = {}; # new anonymous hash
$person->{AGE} = 24; # set field AGE to 24
$person->{NAME} = "Nat"; # set field NAME to "Nat"
If you're looking for something a bit more rigorous, try perltoot.
How do I create a module?
(contributed by brian d foy)
perlmod, perlmodlib, perlmodstyle explain modules in all the gory
details. perlnewmod gives a brief overview of the process along with a
couple of suggestions about style.
If you need to include C code or C library interfaces in your module,
you'll need h2xs. h2xs will create the module distribution structure
and the initial interface files you'll need. perlxs and perlxstut
explain the details.
If you don't need to use C code, other tools such as ExtUtils::Module-
Maker and Module::Starter, can help you create a skeleton module dis-
tribution.
You may also want to see Sam Tregar's "Writing Perl Modules for CPAN" (
http://apress.com/book/bookDisplay.html?bID=14 ) which is the best
hands-on guide to creating module distributions.
How do I create a class?
See perltoot for an introduction to classes and objects, as well as
perlobj and perlbot.
How can I tell if a variable is tainted?
You can use the tainted() function of the Scalar::Util module, avail-
able from CPAN (or included with Perl since release 5.8.0). See also
"Laundering and Detecting Tainted Data" in perlsec.
What's a closure?
Closures are documented in perlref.
Closure is a computer science term with a precise but hard-to-explain
meaning. Closures are implemented in Perl as anonymous subroutines with
lasting references to lexical variables outside their own scopes.
These lexicals magically refer to the variables that were around when
the subroutine was defined (deep binding).
Closures make sense in any programming language where you can have the
return value of a function be itself a function, as you can in Perl.
Note that some languages provide anonymous functions but are not capa-
ble of providing proper closures: the Python language, for example.
For more information on closures, check out any textbook on functional
programming. Scheme is a language that not only supports but encour-
ages closures.
Here's a classic function-generating function:
sub add_function_generator {
return sub { shift() + shift() };
}
$add_sub = add_function_generator();
$sum = $add_sub->(4,5); # $sum is 9 now.
The closure works as a function template with some customization slots
left out to be filled later. The anonymous subroutine returned by
add_function_generator() isn't technically a closure because it refers
to no lexicals outside its own scope.
Contrast this with the following make_adder() function, in which the
returned anonymous function contains a reference to a lexical variable
outside the scope of that function itself. Such a reference requires
that Perl return a proper closure, thus locking in for all time the
value that the lexical had when the function was created.
sub make_adder {
my $addpiece = shift;
return sub { shift() + $addpiece };
}
$f1 = make_adder(20);
$f2 = make_adder(555);
Now "&$f1($n)" is always 20 plus whatever $n you pass in, whereas
"&$f2($n)" is always 555 plus whatever $n you pass in. The $addpiece
in the closure sticks around.
Closures are often used for less esoteric purposes. For example, when
you want to pass in a bit of code into a function:
my $line;
timeout( 30, sub { $line = <STDIN> } );
If the code to execute had been passed in as a string, '$line =
<STDIN>', there would have been no way for the hypothetical timeout()
function to access the lexical variable $line back in its caller's
scope.
What is variable suicide and how can I prevent it?
This problem was fixed in perl 5.004_05, so preventing it means upgrad-
ing your version of perl. ;)
Variable suicide is when you (temporarily or permanently) lose the
value of a variable. It is caused by scoping through my() and local()
interacting with either closures or aliased foreach() iterator vari-
ables and subroutine arguments. It used to be easy to inadvertently
lose a variable's value this way, but now it's much harder. Take this
code:
my $f = 'foo';
sub T {
while ($i++ < 3) { my $f = $f; $f .= $i; print $f, "\n" }
}
T;
print "Finally $f\n";
If you are experiencing variable suicide, that "my $f" in the subrou-
tine doesn't pick up a fresh copy of the $f whose value is <foo>. The
output shows that inside the subroutine the value of $f leaks through
when it shouldn't, as in this output:
foobar
foobarbar
foobarbarbar
Finally foo
The $f that has "bar" added to it three times should be a new $f "my
$f" should create a new lexical variable each time through the loop.
The expected output is:
foobar
foobar
foobar
Finally foo
How can I pass/return a {Function, FileHandle, Array, Hash, Method,
Regex}?
With the exception of regexes, you need to pass references to these
objects. See "Pass by Reference" in perlsub for this particular ques-
tion, and perlref for information on references.
See "Passing Regexes", below, for information on passing regular
expressions.
Passing Variables and Functions
Regular variables and functions are quite easy to pass: just pass
in a reference to an existing or anonymous variable or function:
func( \$some_scalar );
func( \@some_array );
func( [ 1 .. 10 ] );
func( \%some_hash );
func( { this => 10, that => 20 } );
func( \&some_func );
func( sub { $_[0] ** $_[1] } );
Passing Filehandles
As of Perl 5.6, you can represent filehandles with scalar variables
which you treat as any other scalar.
open my $fh, $filename or die "Cannot open $filename! $!";
func( $fh );
sub func {
my $passed_fh = shift;
my $line = <$fh>;
}
Before Perl 5.6, you had to use the *FH or "\*FH" notations. These
are "typeglobs"--see "Typeglobs and Filehandles" in perldata and
especially "Pass by Reference" in perlsub for more information.
Passing Regexes
To pass regexes around, you'll need to be using a release of Perl
sufficiently recent as to support the "qr//" construct, pass around
strings and use an exception-trapping eval, or else be very, very
clever.
Here's an example of how to pass in a string to be regex compared
using "qr//":
sub compare($$) {
my ($val1, $regex) = @_;
my $retval = $val1 =~ /$regex/;
return $retval;
}
$match = compare("old McDonald", qr/d.*D/i);
Notice how "qr//" allows flags at the end. That pattern was com-
piled at compile time, although it was executed later. The nifty
"qr//" notation wasn't introduced until the 5.005 release. Before
that, you had to approach this problem much less intuitively. For
example, here it is again if you don't have "qr//":
sub compare($$) {
my ($val1, $regex) = @_;
my $retval = eval { $val1 =~ /$regex/ };
die if $@;
return $retval;
}
$match = compare("old McDonald", q/($?i)d.*D/);
Make sure you never say something like this:
return eval "\$val =~ /$regex/"; # WRONG
or someone can sneak shell escapes into the regex due to the double
interpolation of the eval and the double-quoted string. For exam-
ple:
$pattern_of_evil = 'danger ${ system("rm -rf * &") } danger';
eval "\$string =~ /$pattern_of_evil/";
Those preferring to be very, very clever might see the O'Reilly
book, Mastering Regular Expressions, by Jeffrey Friedl. Page 273's
Build_MatchMany_Function() is particularly interesting. A complete
citation of this book is given in perlfaq2.
Passing Methods
To pass an object method into a subroutine, you can do this:
call_a_lot(10, $some_obj, "methname")
sub call_a_lot {
my ($count, $widget, $trick) = @_;
for (my $i = 0; $i < $count; $i++) {
$widget->$trick();
}
}
Or, you can use a closure to bundle up the object, its method call,
and arguments:
my $whatnot = sub { $some_obj->obfuscate(@args) };
func($whatnot);
sub func {
my $code = shift;
&$code();
}
You could also investigate the can() method in the UNIVERSAL class
(part of the standard perl distribution).
How do I create a static variable?
(contributed by brian d foy)
Perl doesn't have "static" variables, which can only be accessed from
the function in which they are declared. You can get the same effect
with lexical variables, though.
You can fake a static variable by using a lexical variable which goes
out of scope. In this example, you define the subroutine "counter", and
it uses the lexical variable $count. Since you wrap this in a BEGIN
block, $count is defined at compile-time, but also goes out of scope at
the end of the BEGIN block. The BEGIN block also ensures that the sub-
routine and the value it uses is defined at compile-time so the subrou-
tine is ready to use just like any other subroutine, and you can put
this code in the same place as other subroutines in the program text
(i.e. at the end of the code, typically). The subroutine "counter"
still has a reference to the data, and is the only way you can access
the value (and each time you do, you increment the value). The data in
chunk of memory defined by $count is private to "counter".
BEGIN {
my $count = 1;
sub counter { $count++ }
}
my $start = count();
.... # code that calls count();
my $end = count();
In the previous example, you created a function-private variable
because only one function remembered its reference. You could define
multiple functions while the variable is in scope, and each function
can share the "private" variable. It's not really "static" because you
can access it outside the function while the lexical variable is in
scope, and even create references to it. In this example, "incre-
ment_count" and "return_count" share the variable. One function adds to
the value and the other simply returns the value. They can both access
$count, and since it has gone out of scope, there is no other way to
access it.
BEGIN {
my $count = 1;
sub increment_count { $count++ }
sub return_count { $count }
}
To declare a file-private variable, you still use a lexical variable.
A file is also a scope, so a lexical variable defined in the file can-
not be seen from any other file.
See "Persistent Private Variables" in perlsub for more information.
The discussion of closures in perlref may help you even though we did
not use anonymous subroutines in this answer. See "Persistent Private
Variables" in perlsub for details.
What's the difference between dynamic and lexical (static) scoping?
Between local() and my()?
"local($x)" saves away the old value of the global variable $x and
assigns a new value for the duration of the subroutine which is visible
in other functions called from that subroutine. This is done at
run-time, so is called dynamic scoping. local() always affects global
variables, also called package variables or dynamic variables.
"my($x)" creates a new variable that is only visible in the current
subroutine. This is done at compile-time, so it is called lexical or
static scoping. my() always affects private variables, also called
lexical variables or (improperly) static(ly scoped) variables.
For instance:
sub visible {
print "var has value $var\n";
}
sub dynamic {
local $var = 'local'; # new temporary value for the still-global
visible(); # variable called $var
}
sub lexical {
my $var = 'private'; # new private variable, $var
visible(); # (invisible outside of sub scope)
}
$var = 'global';
visible(); # prints global
dynamic(); # prints local
lexical(); # prints global
Notice how at no point does the value "private" get printed. That's
because $var only has that value within the block of the lexical()
function, and it is hidden from called subroutine.
In summary, local() doesn't make what you think of as private, local
variables. It gives a global variable a temporary value. my() is what
you're looking for if you want private variables.
See "Private Variables via my()" in perlsub and "Temporary Values via
local()" in perlsub for excruciating details.
How can I access a dynamic variable while a similarly named lexical is
in scope?
If you know your package, you can just mention it explicitly, as in
$Some_Pack::var. Note that the notation $::var is not the dynamic $var
in the current package, but rather the one in the "main" package, as
though you had written $main::var.
use vars '$var';
local $var = "global";
my $var = "lexical";
print "lexical is $var\n";
print "global is $main::var\n";
Alternatively you can use the compiler directive our() to bring a
dynamic variable into the current lexical scope.
require 5.006; # our() did not exist before 5.6
use vars '$var';
local $var = "global";
my $var = "lexical";
print "lexical is $var\n";
{
our $var;
print "global is $var\n";
}
What's the difference between deep and shallow binding?
In deep binding, lexical variables mentioned in anonymous subroutines
are the same ones that were in scope when the subroutine was created.
In shallow binding, they are whichever variables with the same names
happen to be in scope when the subroutine is called. Perl always uses
deep binding of lexical variables (i.e., those created with my()).
However, dynamic variables (aka global, local, or package variables)
are effectively shallowly bound. Consider this just one more reason
not to use them. See the answer to "What's a closure?".
Why doesn't "my($foo) = <FILE>;" work right?
"my()" and "local()" give list context to the right hand side of "=".
The <FH> read operation, like so many of Perl's functions and opera-
tors, can tell which context it was called in and behaves appropri-
ately. In general, the scalar() function can help. This function does
nothing to the data itself (contrary to popular myth) but rather tells
its argument to behave in whatever its scalar fashion is. If that
function doesn't have a defined scalar behavior, this of course doesn't
help you (such as with sort()).
To enforce scalar context in this particular case, however, you need
merely omit the parentheses:
local($foo) = <FILE>; # WRONG
local($foo) = scalar(<FILE>); # ok
local $foo = <FILE>; # right
You should probably be using lexical variables anyway, although the
issue is the same here:
my($foo) = <FILE>; # WRONG
my $foo = <FILE>; # right
How do I redefine a builtin function, operator, or method?
Why do you want to do that? :-)
If you want to override a predefined function, such as open(), then
you'll have to import the new definition from a different module. See
"Overriding Built-in Functions" in perlsub. There's also an example in
"Class::Template" in perltoot.
If you want to overload a Perl operator, such as "+" or "**", then
you'll want to use the "use overload" pragma, documented in overload.
If you're talking about obscuring method calls in parent classes, see
"Overridden Methods" in perltoot.
What's the difference between calling a function as &foo and foo()?
When you call a function as &foo, you allow that function access to
your current @_ values, and you bypass prototypes. The function
doesn't get an empty @_--it gets yours! While not strictly speaking a
bug (it's documented that way in perlsub), it would be hard to consider
this a feature in most cases.
When you call your function as "&foo()", then you do get a new @_, but
prototyping is still circumvented.
Normally, you want to call a function using "foo()". You may only omit
the parentheses if the function is already known to the compiler
because it already saw the definition ("use" but not "require"), or via
a forward reference or "use subs" declaration. Even in this case, you
get a clean @_ without any of the old values leaking through where they
don't belong.
How do I create a switch or case statement?
This is explained in more depth in the perlsyn. Briefly, there's no
official case statement, because of the variety of tests possible in
Perl (numeric comparison, string comparison, glob comparison, regex
matching, overloaded comparisons, ...). Larry couldn't decide how best
to do this, so he left it out, even though it's been on the wish list
since perl1.
Starting from Perl 5.8 to get switch and case one can use the Switch
extension and say:
use Switch;
after which one has switch and case. It is not as fast as it could be
because it's not really part of the language (it's done using source
filters) but it is available, and it's very flexible.
But if one wants to use pure Perl, the general answer is to write a
construct like this:
for ($variable_to_test) {
if (/pat1/) { } # do something
elsif (/pat2/) { } # do something else
elsif (/pat3/) { } # do something else
else { } # default
}
Here's a simple example of a switch based on pattern matching, this
time lined up in a way to make it look more like a switch statement.
We'll do a multiway conditional based on the type of reference stored
in $whatchamacallit:
SWITCH: for (ref $whatchamacallit) {
/^$/ && die "not a reference";
/SCALAR/ && do {
print_scalar($$ref);
last SWITCH;
};
/ARRAY/ && do {
print_array(@$ref);
last SWITCH;
};
/HASH/ && do {
print_hash(%$ref);
last SWITCH;
};
/CODE/ && do {
warn "can't print function ref";
last SWITCH;
};
# DEFAULT
warn "User defined type skipped";
}
See "perlsyn/"Basic BLOCKs and Switch Statements"" for many other exam-
ples in this style.
Sometimes you should change the positions of the constant and the vari-
able. For example, let's say you wanted to test which of many answers
you were given, but in a case-insensitive way that also allows abbrevi-
ations. You can use the following technique if the strings all start
with different characters or if you want to arrange the matches so that
one takes precedence over another, as "SEND" has precedence over "STOP"
here:
chomp($answer = <>);
if ("SEND" =~ /^\Q$answer/i) { print "Action is send\n" }
elsif ("STOP" =~ /^\Q$answer/i) { print "Action is stop\n" }
elsif ("ABORT" =~ /^\Q$answer/i) { print "Action is abort\n" }
elsif ("LIST" =~ /^\Q$answer/i) { print "Action is list\n" }
elsif ("EDIT" =~ /^\Q$answer/i) { print "Action is edit\n" }
A totally different approach is to create a hash of function refer-
ences.
my %commands = (
"happy" => \&joy,
"sad", => \&sullen,
"done" => sub { die "See ya!" },
"mad" => \&angry,
);
print "How are you? ";
chomp($string = <STDIN>);
if ($commands{$string}) {
$commands{$string}->();
} else {
print "No such command: $string\n";
}
How can I catch accesses to undefined variables, functions, or methods?
The AUTOLOAD method, discussed in "Autoloading" in perlsub and
"AUTOLOAD: Proxy Methods" in perltoot, lets you capture calls to unde-
fined functions and methods.
When it comes to undefined variables that would trigger a warning under
"use warnings", you can promote the warning to an error.
use warnings FATAL => qw(uninitialized);
Why can't a method included in this same file be found?
Some possible reasons: your inheritance is getting confused, you've
misspelled the method name, or the object is of the wrong type. Check
out perltoot for details about any of the above cases. You may also
use "print ref($object)" to find out the class $object was blessed
into.
Another possible reason for problems is because you've used the indi-
rect object syntax (eg, "find Guru "Samy"") on a class name before Perl
has seen that such a package exists. It's wisest to make sure your
packages are all defined before you start using them, which will be
taken care of if you use the "use" statement instead of "require". If
not, make sure to use arrow notation (eg., "Guru->find("Samy")")
instead. Object notation is explained in perlobj.
Make sure to read about creating modules in perlmod and the perils of
indirect objects in "Method Invocation" in perlobj.
How can I find out my current package?
If you're just a random program, you can do this to find out what the
currently compiled package is:
my $packname = __PACKAGE__;
But, if you're a method and you want to print an error message that
includes the kind of object you were called on (which is not necessar-
ily the same as the one in which you were compiled):
sub amethod {
my $self = shift;
my $class = ref($self) || $self;
warn "called me from a $class object";
}
How can I comment out a large block of perl code?
You can use embedded POD to discard it. Enclose the blocks you want to
comment out in POD markers. The <=begin> directive marks a section for
a specific formatter. Use the "comment" format, which no formatter
should claim to understand (by policy). Mark the end of the block with
<=end>.
# program is here
=begin comment
all of this stuff
here will be ignored
by everyone
=end comment
=cut
# program continues
The pod directives cannot go just anywhere. You must put a pod direc-
tive where the parser is expecting a new statement, not just in the
middle of an expression or some other arbitrary grammar production.
See perlpod for more details.
How do I clear a package?
Use this code, provided by Mark-Jason Dominus:
sub scrub_package {
no strict 'refs';
my $pack = shift;
die "Shouldn't delete main package"
if $pack eq "" || $pack eq "main";
my $stash = *{$pack . '::'}{HASH};
my $name;
foreach $name (keys %$stash) {
my $fullname = $pack . '::' . $name;
# Get rid of everything with that name.
undef $$fullname;
undef @$fullname;
undef %$fullname;
undef &$fullname;
undef *$fullname;
}
}
Or, if you're using a recent release of Perl, you can just use the Sym-
bol::delete_package() function instead.
How can I use a variable as a variable name?
Beginners often think they want to have a variable contain the name of
a variable.
$fred = 23;
$varname = "fred";
++$$varname; # $fred now 24
This works sometimes, but it is a very bad idea for two reasons.
The first reason is that this technique only works on global variables.
That means that if $fred is a lexical variable created with my() in the
above example, the code wouldn't work at all: you'd accidentally access
the global and skip right over the private lexical altogether. Global
variables are bad because they can easily collide accidentally and in
general make for non-scalable and confusing code.
Symbolic references are forbidden under the "use strict" pragma. They
are not true references and consequently are not reference counted or
garbage collected.
The other reason why using a variable to hold the name of another vari-
able is a bad idea is that the question often stems from a lack of
understanding of Perl data structures, particularly hashes. By using
symbolic references, you are just using the package's symbol-table hash
(like %main::) instead of a user-defined hash. The solution is to use
your own hash or a real reference instead.
$USER_VARS{"fred"} = 23;
$varname = "fred";
$USER_VARS{$varname}++; # not $$varname++
There we're using the %USER_VARS hash instead of symbolic references.
Sometimes this comes up in reading strings from the user with variable
references and wanting to expand them to the values of your perl pro-
gram's variables. This is also a bad idea because it conflates the
program-addressable namespace and the user-addressable one. Instead of
reading a string and expanding it to the actual contents of your pro-
gram's own variables:
$str = 'this has a $fred and $barney in it';
$str =~ s/(\$\w+)/$1/eeg; # need double eval
it would be better to keep a hash around like %USER_VARS and have vari-
able references actually refer to entries in that hash:
$str =~ s/\$(\w+)/$USER_VARS{$1}/g; # no /e here at all
That's faster, cleaner, and safer than the previous approach. Of
course, you don't need to use a dollar sign. You could use your own
scheme to make it less confusing, like bracketed percent symbols, etc.
$str = 'this has a %fred% and %barney% in it';
$str =~ s/%(\w+)%/$USER_VARS{$1}/g; # no /e here at all
Another reason that folks sometimes think they want a variable to con-
tain the name of a variable is because they don't know how to build
proper data structures using hashes. For example, let's say they
wanted two hashes in their program: %fred and %barney, and that they
wanted to use another scalar variable to refer to those by name.
$name = "fred";
$$name{WIFE} = "wilma"; # set %fred
$name = "barney";
$$name{WIFE} = "betty"; # set %barney
This is still a symbolic reference, and is still saddled with the prob-
lems enumerated above. It would be far better to write:
$folks{"fred"}{WIFE} = "wilma";
$folks{"barney"}{WIFE} = "betty";
And just use a multilevel hash to start with.
The only times that you absolutely must use symbolic references are
when you really must refer to the symbol table. This may be because
it's something that can't take a real reference to, such as a format
name. Doing so may also be important for method calls, since these
always go through the symbol table for resolution.
In those cases, you would turn off "strict 'refs'" temporarily so you
can play around with the symbol table. For example:
@colors = qw(red blue green yellow orange purple violet);
for my $name (@colors) {
no strict 'refs'; # renege for the block
*$name = sub { "<FONT COLOR='$name'>@_</FONT>" };
}
All those functions (red(), blue(), green(), etc.) appear to be sepa-
rate, but the real code in the closure actually was compiled only once.
So, sometimes you might want to use symbolic references to directly
manipulate the symbol table. This doesn't matter for formats, handles,
and subroutines, because they are always global--you can't use my() on
them. For scalars, arrays, and hashes, though--and usually for subrou-
tines-- you probably only want to use hard references.
What does "bad interpreter" mean?
(contributed by brian d foy)
The "bad interpreter" message comes from the shell, not perl. The
actual message may vary depending on your platform, shell, and locale
settings.
If you see "bad interpreter - no such file or directory", the first
line in your perl script (the "shebang" line) does not contain the
right path to perl (or any other program capable of running scripts).
Sometimes this happens when you move the script from one machine to
another and each machine has a different path to perl---/usr/bin/perl
versus /usr/local/bin/perl for instance. It may also indicate that the
source machine has CRLF line terminators and the destination machine
has LF only: the shell tries to find /usr/bin/perl<CR>, but can't.
If you see "bad interpreter: Permission denied", you need to make your
script executable.
In either case, you should still be able to run the scripts with perl
explicitly:
% perl script.pl
If you get a message like "perl: command not found", perl is not in
your PATH, which might also mean that the location of perl is not where
you expect it so you need to adjust your shebang line.
AUTHOR AND COPYRIGHT
Copyright (c) 1997-2006 Tom Christiansen, Nathan Torkington, and other
authors as noted. All rights reserved.
This documentation is free; you can redistribute it and/or modify it
under the same terms as Perl itself.
Irrespective of its distribution, all code examples in this file are
hereby placed into the public domain. You are permitted and encouraged
to use this code in your own programs for fun or for profit as you see
fit. A simple comment in the code giving credit would be courteous but
is not required.
perl v5.8.8 2006-06-14 PERLFAQ7(1)
Man(1) output converted with
man2html